Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Salient object detection based on difference of Gaussian feature network
HOU Yunlong, ZHU Lei, CHEN Qin, LYU Suidong
Journal of Computer Applications    2021, 41 (3): 706-713.   DOI: 10.11772/j.issn.1001-9081.2020060957
Abstract386)      PDF (1463KB)(832)       Save
As a clue with physiological basis, the center-surround contrast theory has been widely used in traditional saliency detection models. However, this theory is rarely applied to models based on deep Convolutional Neural Network (CNN) explicitly. In order to introduce the classic center-surround contrast theory into deep CNN, a salient object detection model based on Difference of Gaussian (DoG) feature network was proposed. Firstly, a Difference of Gaussian Pyramid (DGP) structure was constructed on the deep features of multiple scales to perceive the local prominent features of salient object in an image. Then, the obtained differential feature were used to perform weighted selection to the deep features with rich semantic information. Finally, the accurate extraction of the salient object was realized. In addition, the Gaussian smoothing process was implemented by using standard one-dimensional convolution in the proposed network design, so as to reduce the computational complexity and realize the end-to-end training of the network at the same time. Through comparison of the proposed model and six salient object detection algorithms on four public datasets, it can be seen that the results obtained by the proposed model achieve the best performance in the quantitative evaluation of Mean Absolute Error (MAE) and maximum F-measure. Especially on the DUTS-TE dataset the maximum F-measure and the mean absolute error of the results of the proposed model reach 0.885 and 0.039 respectively. Experimental results show that the proposed model has good detection performance for salient objects in complex natural scenes.
Reference | Related Articles | Metrics